🎉 Ace XAT 2025 with 2IIM's Crash Course - Enrol now


🎉Effortlessly calculate your score with the 2IIM Score Calculator!🎉

XAT 2023 Question Paper | Quantitative Aptitude and Data Interpretation

XAT Previous Year Paper | XAT QADI Questions | Question 15

The best questions to practice for XAT Exam are the actual XAT Question Papers. 2IIM offers you exactly that, in a student friendly format to take value from this. In XAT 2023 we saw some beautiful questions that laid emphasis on Learning ideas from basics and being able to comprehend more than remembering gazillion formulae and shortcuts. Original XAT Question paper is the best place to start off your XAT prep practice. This page provides exactly that. To check out about 1000 CAT Level questions with detailed video solutions for free, go here: CAT Question Bank

Question 15 : Consider \(a_{n+1}=\frac{1}{1+\frac{1}{a_n}}\) for \(n=1,2, \ldots, 2008,2009\) where \(a_1=1\). Find the value of \(a_1 a_2+a_2 a_3+a_3 a_4+\cdots+a_{2008} a_{2009}\)

  1. \(\frac{2009}{1000}\)
  2. \(\frac{2009}{2008}\)
  3. \(\frac{2008}{2009}\)
  4. \(\frac{6000}{2009}\)
  5. \(\frac{2008}{6000}\)

🎉 Ace XAT 2025 with 2IIM's Crash Course - Enrol now


Best CAT Online Coaching
Try upto 40 hours for free
Learn from the best!


2IIM : Best Online CAT Coaching.

🎉Effortlessly calculate your score with the 2IIM Score Calculator!🎉


2IIM : Best Online CAT Coaching.


Video Explanation


Best CAT Coaching in Chennai


CAT Coaching in Chennai - CAT 2022
Limited Seats Available - Register Now!


Explanatory Answer

\( a _ { n + 1 } = \frac { 1 } { \frac { 1 } { a _ { n } } + 1 } \)
\( a _ { 1 } = 1 \)
\( a _ { 2 } = \frac { 1 } { 1 + 1 } = \frac { 1 } { 2 } \)
\( a _ { 3 } = \frac { 1 } { 2 + 1 } = \frac { 1 } { 3 } \)
Generalizing…, \( a _ { n } = \frac { 1 } { n + 1 } \)
\( = a _ { 1 } a _ { 2 } + a _ { 2 } a _ { 3 } + a _ { 3 } a _ { 4 } + \ldots + a _ { 2008 } a _ { 2009 } \) 
\( = \frac { 1 } { 1 } \cdot \frac { 1 } { 2 } + \frac { 1 } { 2 } \cdot \frac { 1 } { 3 } + \frac { 1 } { 3 } \cdot \frac { 1 } { 4 } + \ldots + \frac { 1 } { 2008 } \cdot \frac { 1 } { 2009 } \) 
\( = \frac { 1 } { 1 \times 2 } + \frac { 1 } { 2 \times 3 } + \frac { 1 } { 3 \times 4 } + \ldots + \frac { 1 } { 2008 \times 2009 } \)
\( = \frac { 2 - 1 } { 1 \times 2 } + \frac { 3 - 2 } { 2 \times 3 } + \frac { 4 - 3 } { 3 \times 4 } + \ldots + \frac { 2009 - 2008 } { 2008 \times 2009 } \) 
\( = \frac { 1 } { 1 } - \frac { 1 } { 2 } + \frac { 1 } { 2 } - \frac { 1 } { 3 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \ldots + \frac { 1 } { 2008 } - \frac { 1 } { 2009 } \)
\( = \frac { 1 } { 1 } - \frac { 1 } { 2009 } \)
\( = \frac { 2008 } { 2009 } \)


The question is " Consider \(a_{n+1}=\frac{1}{1+\frac{1}{a_n}}\) for \(n=1,2, \ldots, 2008,2009\) where \(a_1=1\). Find the value of \(a_1 a_2+a_2 a_3+a_3 a_4+\cdots+a_{2008} a_{2009}\) "

Hence, the answer is '\(\frac{2008}{2009}\)'

Choice C is the correct answer.

CAT Questions | CAT Quantitative Aptitude

CAT Questions | Verbal Ability for CAT


Where is 2IIM located?

2IIM Online CAT Coaching
A Fermat Education Initiative,
58/16, Indira Gandhi Street,
Kaveri Rangan Nagar, Saligramam, Chennai 600 093

How to reach 2IIM?

Mobile: (91) 99626 48484 / 94459 38484
WhatsApp: WhatsApp Now
Email: info@2iim.com