The best questions to practice for CAT Exam are the actual CAT Question Papers. 2IIM offers you exactly that, in a student friendly format to take value from this. In CAT 2020 we saw some beautiful questions that laid emphasis on Learning ideas from basics and being able to comprehend more than remembering gazillion formulae and shortcuts. Original CAT Question paper is the best place to start off your CAT Preparation. Here's one interesting question from CAT 2020 Question Paper with a detailed video and text solutions. To check out about 1000 CAT Level questions with detailed video solutions for free, go here: CAT Question Bank
Question 26 : How many pairs (a,b) of positive integers are there such that a ≤ b and ab = 42017?
42017 = 22×2017
Number of factors of 22×2017 = 2×2017 + 1= 4035
Number of pairs of a,b such that a×b = 22×2017 is equal to half the Number of factors of 22×2017
Number of pairs of a,b such that a×b = 22×2017
= \\frac{4035}{2})
You observe that \\frac{4035}{2}) is not an integer, because 22×2017 is a perfect square and one of the pairs of (a,b) is (2017 , 2017).
So, the number of such pairs is the highest integer roundoff of \\frac{4035}{2}) = 2018.
Among all these 2018 pairs, one of the integer is less than or equal to the other. (Equal in the case of (2017,2017))
We assume that a is the least one of the two...
Hence there are 2018 pairs that satify this condition.
Alternate Method:
a × b = 42017
a × b = 22×2017
a and b are of the form 2x and 2y respectfully...
Since a ≤ b;
2x ≤ 2y
x ≤ y
Also, a × b = 22×2017
2x + 2y = 22×2017
x + y = 2×2017
We have 2 conditions to deal with...
x ≤ y and x + y = 2×2017
Let's start with x = y:
Here, x = y = 2017
From here on, we decrement x and increment y to maintain the conditions x ≤ y and x + y = 2×2017
We can keep doing this until x = 0, because if x is negative, a which is 2x will not remain an integer.
x | y |
---|---|
2017 | 2017 |
2016 | 2018 |
2015 | 2019 |
⁝ | ⁝ |
⁝ | ⁝ |
⁝ | ⁝ |
2 | 4033 |
1 | 4034 |
0 | 4035 |
Hence x can range from 2017 to 0; and thereby x can take 2018 values.
Therefore, there can be 2018 pairs of (a,b) that sitisfy a ≤ b and ab = 42017
The question is "How many pairs (a,b) of positive integers are there such that a ≤ b and ab = 42017?"
Copyrights © All Rights Reserved by 2IIM.com - A Fermat Education Initiative.
Privacy Policy | Terms & Conditions
CAT® (Common Admission Test) is a registered trademark of the Indian Institutes of Management. This website is not endorsed or approved by IIMs.
2IIM Online CAT Coaching
A Fermat Education Initiative,
58/16, Indira Gandhi Street,
Kaveri Rangan Nagar, Saligramam, Chennai 600 093
Mobile: (91) 99626 48484 / 94459 38484
WhatsApp: WhatsApp Now
Email: info@2iim.com