IPMAT 2019 Question Paper IPM Indore Quantitative Ability. Solve questions from IPMAT 2019 Question Paper from IPM Indore and check the solutions to get adequate practice. The best way to ace IPMAT is by solving IPMAT Question Paper. To solve other IPMAT Sample papers, go here:IPM Sample Paper
Question 39: The function f(x) = \\frac{x^{3} - 5x^{2} - 8x}{3}\\) is
Let’s find the roots of the function, That is where the function takes the value 0.
f(x) = 0.
\\frac{x^{3} - 5x^{2} - 8x}{3}\\) = 0
x3- 5x2- 8x = 0
x (x2−5x−8) = 0
x = 0 or x2−5x−8 = 0
x2−5x−8 = 0
x2−5x + \\frac{25}{4}\\) −\\frac{25}{4}\\) −8 = 0
(x - \\frac{5}{2}\\) )2- \\frac{57}{4}\\) = 0
(x - \\frac{5}{2}\\) )2= \\frac{57}{4}\\)
x - \\frac{5}{2}\\) = +\\frac{\sqrt{57}}{2}\\) (or) x - \\frac{5}{2}\\) = - \\frac{\sqrt{57}}{2}\\)
x = \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\) or x = \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\)
Therefore, the roots of the equation \\frac{x^{3} - 5x^{2} - 8x}{3}\\) are 0, \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\), \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\)
That means, when plotted f(x) will be 0 at 3 points when x = 0 or \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\) or \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\)
Arranged in increasing order the roots are \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\) , 0 , \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\).
Check f(x) at a point which is less than \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\) and at a point greater than \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\)
f(-2) = \\frac{(-2)^{3} - 5(-2)^{2} - 8(-2)}{3}\\) = \\frac{-8-20-16}{3}\\) = \\frac{-44}{3}\\) = -ve.
f(10) = \\frac{(10)^{3} - 5(10)^{2} - 8(10)}{3}\\) = \\frac{1000-500-80}{3}\\) = \\frac{420}{3}\\) = 140 =+ve
Since f(x) is negative below \\frac{5}{2}\\) - \\frac{\sqrt{57}}{2}\\) and positive above \\frac{5}{2}\\) + \\frac{\sqrt{57}}{2}\\).
And since it is a continuous function, the function looks something like this.
From the graph, only Option C is correct.
f(x) is negative and monotonically increasing for x \\in (-\infty, \frac{5-\sqrt{57}}{2}\\)) and positive and monotonically increasing for x \\in (\frac{5+\sqrt{57}}{2},+\infty\\))
The question is"The function f(x) = \\frac{x^{3} - 5x^{2} - 8x}{3}\\) is"
Choice C is the correct answer
Copyrights © All Rights Reserved by 2IIM.com - A Fermat Education Initiative.
Privacy Policy | Terms & Conditions
CAT® (Common Admission Test) is a registered trademark of the Indian Institutes of Management. This website is not endorsed or approved by IIMs.
2IIM Online CAT Coaching
A Fermat Education Initiative,
58/16, Indira Gandhi Street,
Kaveri Rangan Nagar, Saligramam, Chennai 600 093
Mobile: (91) 99626 48484 / 94459 38484
WhatsApp: WhatsApp Now
Email: info@2iim.com