This is a fairly doable question from Functions. Though the question seems to be tricky, it is easy if one comprehends the basics of what is being asked. Solving these kinds of questions from the CAT Previous Year Paper gives you the essence of the difficulty tested in the CAT Exam.
Question 33 : Let f(x)=min{2x2, 52 - 5x}, where x is any positive real number.Then the maximum possible value of f(x) is [TITA]
Given f(x) = min {2x2, 52 − 5x}
From graph, we see that f(x) increases initially and then decreases after intersection
So, maximum value occurs when 2x2 = 52 − 5x
2x2 + 5x – 52 = 0
2x2 - 8x + 13x - 52 = 0
2x(x-4) + 13(x-4) = 0
(2x+13) (x-4) = 0
Since x is a Positive real number, x = 4
min{2x2,52-5x} = min {32,32} = 32 = max f(x)
The question is " Let f(x)=min{2x2, 52 - 5x}, where x is any positive real number.Then the maximum possible value of f(x) is [TITA]"
Copyrights © All Rights Reserved by 2IIM.com - A Fermat Education Initiative.
Privacy Policy | Terms & Conditions
CAT® (Common Admission Test) is a registered trademark of the Indian Institutes of Management. This website is not endorsed or approved by IIMs.
2IIM Online CAT Coaching
A Fermat Education Initiative,
58/16, Indira Gandhi Street,
Kaveri Rangan Nagar, Saligramam, Chennai 600 093
Mobile: (91) 99626 48484 / 94459 38484
WhatsApp: WhatsApp Now
Email: info@2iim.com